2016年10月15日 星期六

有關於中垂線


2016年10月15日今天有人問了一題數學題目,如下


image


首先,我先把$P(2,0)$、$Q(4,2)$兩點畫在直角坐標平面上,如下


image


如上圖,可發現:$P(2,0)$在$x$軸上,$Q(4,2)$在第一象限,再來


image


代表「直線AP的長度」等於「直線AQ的長度」,換句話說,「A點到P點的距離」等於「A點到P點的距離」,那問題是…A點會在哪裡呢?A點會落在直線PQ的中垂線上,如下圖


image


也就是說,只要是中垂線上的點,都可能是A點!只是現在的A點必須在$y$軸上,所以結果明顯了!所以現在我變成求直線PQ與$y$軸的交點A。如下


image


首先,求直線PQ的中垂線:


設中垂線上的點為(x,y),因題目有說(x,y)至P、Q兩點的距離相等,因此
image


把坐標的數值代入距離的公式,得到如下
image


等號兩邊都有根號,去掉根號後,展開等號兩邊的式子,再同類項合並
image
最後得到中垂線的直線方程式為:x+y=4。


第二,求中垂線與y軸的交點坐標A:

因為在y軸的點,其x=0,代入直線方程式x+y=4得0+y=4,y=4,所以A點坐標為A(0,4)。

沒有留言:

張貼留言

08上第2-2章-根式運算

 關於「根式運算」的四階層次學習單主題 1根式的基本運算: 學習重點:了解根式的基本運算,包括相加、相減、相乘和相除。 練習題目:計算 $\sqrt{2} + \sqrt{3}$ 和 $\sqrt{5} - \sqrt{2}$。 2根式的乘除運算: 學習重點:掌握根式的乘法和除法...