在第2章中,要學習的是 在一個變數下方程式找解(root-finding problem),即在 f(x)=0,求 x。 接下來第二個介紹的是 Fixed-Point Iteration(固定點疊代法)。
什麼是「fixed-point」呢?A number p is a fixed-point for a given function g if g(p)=p.
例題1:
the function g(x)= x^2-2, for -2\leqslant x\leqslant3, has fixed points x=-1, x=-2.
g(-1)=(-1)^{2}-2=-1, g(2)=(2)^{2}-2=2.
定理2.2:
(1) if g\in C[a,\ b], and g(x)\in[a,\ b] for all x\in[a,\ b], then g has a fixed point in [a,\ b].
(2) if, in addition, g^{\prime}(x) exists on (a,b) and a positive constant k<1 exists with \left|g^{\prime}(x)\right|\leqslant k, for all x\in(a,b), then the fixed point in [a,\ b] is unique.
沒有留言:
張貼留言