在第2章中,要學習的是 在一個變數下方程式找解(root-finding problem),即在 $f(x)=0$,求 $x$。 接下來第二個介紹的是 Fixed-Point Iteration(固定點疊代法)。
什麼是「fixed-point」呢?A number $p$ is a fixed-point for a given function $g$ if $g(p)=p$.
例題1:
the function $g(x)= x^2-2$, for $-2\leqslant x\leqslant3$, has fixed points $x=-1$, $x=-2$.
$g(-1)=(-1)^{2}-2=-1$, $g(2)=(2)^{2}-2=2$.
定理2.2:
(1) if $g\in C[a,\ b]$, and $g(x)\in[a,\ b]$ for all $x\in[a,\ b]$, then $g$ has a fixed point in $[a,\ b]$.
(2) if, in addition, $g^{\prime}(x)$ exists on $(a,b)$ and a positive constant $k<1$ exists with $\left|g^{\prime}(x)\right|\leqslant k$, for all $x\in(a,b)$, then the fixed point in $[a,\ b]$ is unique.